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Abstract

This document describes work on a prototype Mixed Finite Element Method(MFEM) hydrodynamics algorithm in the ARES
code, and its application to a set of standard test problems. This work is motivated by the need for improvements to the algorithms
used in the Lagrange hydrodynamics step to make them more robust. We begin by identifying the outstanding issues with tradi-
tional numerical hydrodynamics algorithms followed by a description of the proposed method and how it may address several of
these longstanding issues. We give a theoretical overview of the proposed MFEM algorithm as well as a summary of the coding
additions and modifications that were made to add this capability to the ARES code. We present results obtained with the new
method on a set of canonical hydrodynamics test problems and demonstrate significant improvement in comparison to results
obtained with traditional methods. We conclude with a summary of the issues still at hand and motivate the need for continued
research to develop the proposed method into maturity.

1 Introduction and Motivation

This work is motivated primarily by the desire to make the numerical algorithms which are used in solving the equations of
hydrodynamics (namely the inviscid Euler equations) in a Lagrangian frame more robust with respect to grid motion. Our goal
is to improve the Lagrangian hydrodynamics algorithms to prevent spurious grid distortions and more importantly, to eliminate
artificial symmetry breaking in problems with irregular / non-orthogonal grids.

Originally, this work was driven by the desire to obtain improved treatment to the so called “hourglass” (a.k.a. checkerboard)
instabilities which are a common plague among traditional staggered-grid hydrodynamics (SGH) codes. These instabilities are
triggered by a point (or delta function) source and occur at the highest spatial frequency supported by the computational grid
(namely a single zone or node). They do not go away as the grid is refined and unless they are damped (or removed) by a post-
processing “filter” step, they have the potential to grow unchecked as the numerical solution is evolved over time, oftentimes
leading to unacceptable Lagrangian grid distortion and eventual termination of a calculation. An example of such an instability
is given in Figure 1. The standard solution to this problem isto counteract the spurious accelerations that these modes produce
by introducing an “anti-hourglass” force [1]. This simple and efficient method does a reasonable job of keeping these instabilities
in check; but this approach is really just a “fix-up” and does not address the fundamental source of the instability. Recently, the
method of sub-zonal pressures has been introduced to address this problem [2]. During the early stages of this effort, the method
of sub-zonal pressures was investigated as a potential candidate for improving robustness. It was discovered that while this method
does appear to suppress certain forms of hourglass instabilities, it is not clear whether this method is suppressing actual physical
modes. Furthermore, it was discovered that this method introduces an artificial divergence-free vorticity mode. While it is clear
that hourglass instabilities can lead to spurious grid distortion, it is not always clear that they are the sole cause of spurious grid
distortion. It is tempting to attribute any spurious grid distortion in a given calculation to “hourglass modes”, making them the
default scapegoat for a wide variety of mesh instabilities;but in actuality, there are a variety of sources for such spurious grid
distortions when using a traditional SGH method in a typicalshock hydrodynamics problem (see Figure 2).
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Figure 1: Example of a “checkerboard” instability in the
pressure field and corresponding “hourglass” instability in
velocity field; excited by applying a time dependent per-
turbation to a single node at the center. Instability existsat
highest spatial frequency of the underlying grid irrespective
of mesh resolution and is a result of a fundamental instabil-
ity in the discrete representation of velocity, pressure and
the spatial differential operators which relate them.

Figure 2: Example of spurious grid distortion encountered
when applying standard SGH methods to the Noh problem
on an initially orthogonal mesh. There are multiple sources
of this grid distortion including hourglass instabilities, in-
accuracies in the pressure gradient operator and discretiza-
tion of the artificial viscosity term. Each of these errors can
amplify each other over time, leading to a rapid tangling of
the grid.

Perhaps the most outstanding issue with traditional SGH methods is the need to improve numerical symmetry preservation
in problems where some degree of symmetry is present (e.g. spherical symmetry), but the underlying computational mesh is
not aligned with the shock flow. It is well known that traditional SGH methods break down when the underlying computational
mesh is distorted; this limitation is one of the primary motivations for the development of Arbitrary Lagrangian-Eulerian (ALE)
methods which keep the computational grid as smooth as possible. In a typical SGH Lagrange step, kinematic vector fields (e.g.
acceleration, velocity) are computed at mesh nodes due to a collection of cell centered thermodynamic variables (e.g. pressure,
energy, density) [3], [4]. For example, the force acting on agiven mesh node due to the gradient of a pressure field is computed
using a “control volume” finite differencing technique as illustrated in Figure 3. This simple approach is extremely efficient, but
is valid only at the center of mass of the control volume. For “well behaved” grids, the control volume center of mass and the
node to be accelerated are coincident; however, as the grid is distorted, the control volume center of mass and the mesh node are
no longer coincident. This causes artificial “torque” on thenode, resulting in spurious, non-physical mesh motion.

The method of artificial viscosity, as originally introduced by [5], is still the most popular method for treating shock waves.
The current state of the art is to use a Van Leer type “monotonic limiter”[6] in conjunction with an artificial viscosity tokeep the
artificial diffusion length of the shock front to a minimum while preventing spurious “ringing” (a.k.a. overshoots and undershoots).
The application of such monotonicity limiters is closely related to the use of Riemann solvers to track shock discontinuities. For
1D calculations or cases where the computational grid is perfectly aligned with the flow, such methods give very good results. For
general meshes which are not aligned with the flow (in 2D,r-zand 3D), such methods are known to cause symmetry breaking (e.g.
the Noh problem run on an initially square mesh as shown in Figure 2). It is clear that the artificial viscosity formulationis the
biggest (though not the only) culprit in breaking symmetry when shock waves pass over non-aligned grids. Based on numerical
evidence, the use of monotonic limiters seems to amplify thesymmetry breaking for shock waves passing over non-alignedgrids
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Figure 3: Schematic depiction of the traditional control volume discretization of the pressure gradient operator for computing the
force acting on a node. On a well behaved grid the control volume center of mass is coincident with the node we wish to accelerate
(left). However, as the grid is distorted, the control volume center of mass and nodal coordinate are no longer coincident (right.)

(see for example [7] and [8]). Furthermore, the artificial viscosity is typically implemented as a scalar term (with units of pressure)
which is added to the bulk pressure in the hydro equations andsubsequent internal energy equations. This approach is valid only
for the special case of non-vortical flows (i.e. it ignores a shear term). The more general case requires a so called ”tensor viscosity”
(see for example [9]). Another way of stating this is that theartificial viscous force term involves theDiv(Grad) operator acting
on the velocity field.

Traditional SGH methods approximate the divergence of the velocity as a simple change in volume with respect to time. This
approximation is used to compute the change in internal energy of a given zone due to the kinematic work done on it during the
Lagrange step. This approach is referred to as aPdV scheme, since the change in energy during the Lagrange step is computed
as the pressure,P, multiplied by the change in volume,dV. The change in kinetic energy as computed from the discretization
of the pressure gradient is not equal and opposite to thisPdV based change in internal energy for a given time step, because the
discretizations used forGrad andDiv are not compatible with each other. The error in energy conservation for these schemes
is therefore bounded by∆t (the discrete time step) for planar (x-y) and for 3D (x-y-z) calculations and will converge to zero
under time refinement. For axisymmetric (r-z) calculations, there is another component to this error which is due to the incorrect
assumption that the divergence of the velocity is constant in a zone (see [8] for more details) and this error willnot converge to
zero under time or space refinement. Conservation of total numerical energy is required to guarantee convergence / consistency
as problem is refined in time and space.

To summarize, the key issues with respect to traditional low-order SGH methods are:

• Inability to calculate accurate pressure gradients on distorted meshes.

• Inability to preserve symmetry in problems where shock wavepropagation is not aligned with the computational mesh.

• Presence of high frequency ”checkerboard modes” in pressure (resulting in ”hourglass modes” in the velocity) that leadto
instabilities in time dependent calculations.

• Inability to conserve total energy (kinetic plus internal)algebraically (i.e. to machine precision), especially in axisymmetric
coordinates.

We are currently investigating / advocating the use of high order mixed finite element methods for tackling some of these long
standing issues. Mixed finite element methods are a promising alternative to traditional staggered grid (finite difference, finite
volume based) methods for discretizing the first order spatial differential operators in multi-dimensions, namelyGrad, Curl and
Div as well as the second order spatial differential operatorsGrad(Div), Curl(Curl) and Div(Grad). The MFEM excels at
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discretizing equations that involve these operators even when the underlying grid geometry (i.e. mesh) is very distorted. This
means we can calculate accurate and symmetry preserving pressure gradient operators even on highly distorted grids. Wealso
feel that the key to removing the checkerboard / hourglass instability lies in the use of astablemixed finite element basis function
pair for discretizing the pressure and velocity (for more onstability in FEM, see [10]). It is now well known that the bilinear
velocity-constant pressure basis (a.k.a. Q1-Q0 on quadrilateral / hexahedral elements, staggered grid hydro) is an unstable mixed
finite element pair. Hourglass modes are now known to be caused by the inability of the discreteGrad operator (which defines
the spatial relationship between velocity and pressure) tocapture the null space of the continuumGrad operator (i.e. the set of all
constants) at the grid level.

There are multiple sets of MFEM basis functions which satisfy the stability condition. From a practical standpoint, there are
many things we must consider when choosing a mixed finite element basis pair for hydrodynamics:

• Where are the velocity degrees of freedom defined?

• Where are the pressure degrees of freedom defined?

• What spatial differential operators will we be using?

In a typical hydrodynamics code, all thermodynamic variables (e.g. pressure, energy, density) are discretized as piece-wise con-
stant values at zone centers. To remain consistent with the current methods in the ARES code, we would like to keep our discrete
thermodynamic fields as piece-wise constant zone-centeredquantities. Therefore, in this work, we utilize so called “divergence
conforming” orH(Div) mixed methods. In this approach, the pressure is piece-wiseconstant in a zone while the velocity is dis-
cretized on mesh faces (edges in 2D) using a divergence conforming basis set where the degrees of freedom (i.e. the unknowns)
are the normal projections of the velocity on mesh faces. We have developed and implemented both a low order (Raviart-Thomas
[11]) and a high order (Brezzi-Douglas-Marini [12]) version of this H(Div) approach for Lagrangian hydrodynamics. Such
H(Div) methods require the assembly and solution of a global sparselinear system to solve for the velocity unknowns (the normal
projections of the velocity at element interfaces) and thishas required the addition of some new software to interface with the
HYPRE linear solvers library [13]. The use of anH(Div) conforming basis allows us to generate a discrete version oftheGrad
operator as a sparse, rectangular matrix which maps our piece-wise constant pressure field to the discrete face based velocity field
which automatically has the correct range and null spaces. The transpose of this rectangular matrix is the adjoint of theGrad
operator, namely a discrete version of theDiv operator (similar to the support operators method of [14]).This natural approach
to discretizingGrad andDiv in a consistent manner allows us to preserve conservation oftotal energy at every Lagrange step in
contrast to the non-conservative discretizations used in atraditional SGH method.

For Lagrangian hydrodynamics, a velocity field must somehowbe computed at nodes in order to move the computational
grid at each discrete time step. TheH(Div) MFEM solves for the normal projections of velocity at mesh faces; and once these
are known, we can use the velocity basis functions to evaluate the velocity field at any point in a given zone. However, by
construction, theH(Div) velocity basis functions only enforce normal continuity ofthe velocity across zone interfaces, and so
there is no guarantee that the velocity field at mesh nodes will be unique. This is an unfortunate downside to suchH(Div) methods
in the context of Lagrangian hydrodynamics – it means we needsome form of “averaging” or interpolation to convert our face
based representation of velocity into a node based representation. The process by which the face based velocity unknowns are
computed using anH(Div) MFEM are naturally free of hourglass modes (i.e. they are always orthogonal to the set of discrete
divergence free velocity modes); however, the process by which nodal velocity fields are computed is not constrained in this
manner and therefore some form of hourglass projection / damping is still required.

For treating shock wave propagation, we advocate the traditional approach of adding a monotonically limited artificialviscosity
term to the Euler equations. We believe that the key to preserving symmetry in problems where shock waves propagate through
meshes that are not aligned with the flow lies in the proper discretization of this viscous term (and careful treatment of the limiter
in multi-dimensions) as well as the pressure gradient operator. In this work, we consider only the case of a scalar artificial viscosity
(i.e. a scalarq which is simply added to the bulk pressureP in the hydro equations) and show how theH(Div) MFEM can be used
to make improvements to this traditional approach. However, we emphasize that this approach is valid only for the special case of
non-vortical flows (i.e. it ignores a shear term). The more general case requires a so called ”tensor viscosity” and will therefore
require a discrete version of theDiv(Grad) operator acting on the velocity field. Another drawback to the H(Div) approach is
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that such an operator is not well defined for this function space – again, this is because the fundamental assumption of working
in anH(Div) space is that only the normal components of the velocity are continuous across element boundaries; aDiv(Grad)
operator requires that all components (tangential and normal) of the velocity field be continuous across element boundaries. This
realization along with the previous discussion concerningthe need of obtaining hourglass-free nodal fields suggests that anH(Div)
method is not the most appropriate MFEM basis to use and that perhaps a different choice of basis functions would yield even
better results; however, it is not yet clear which choice is the best for Lagrangian shock hydrodynamics. We will discussthis idea
in greater detail at the end of this document in Section 5.

2 Theoretical Discussion

In this section we introduce the set of continuum partial differential equations (PDEs) we are interested in solving, namely the
inviscid Euler equations in a Lagrangian (a.k.a. co-moving, material) reference frame. We describe the key propertiesthat these
equations posses and their connection to the physical principles from which they are derived. We begin the discretization by first
describing what we mean by “Mixed Finite Element Methods.” We cast the relevant equations in variational form and apply a
rigorous Galerkin procedure to reduce our continuum equations to a set of semi-discrete (i.e. no time discretization isyet applied)
ordinary differential equations (ODEs).

2.1 Notational Conventions

Before we begin our discussion of the equations, we introduce the notational conventions that will be used throughout this doc-
ument. Forcontinuumfields, we will adopt the conventions as outlined in Table 1. All vector fields will be designated with an
arrow, with individual spatial components denoted with subscriptsx andy (for 2D).

Notation / Symbol Description

~x = {x,y} Lagrangian coordinate
~v = {vx,vy} Velocity vector field
~a = {ax,ay} Acceleration vector field
~f = { fx, fy} Force vector field
ρ Density (mass/volume)
m Mass
V Volume
e Internal energy per mass
P Scalar pressure
KE Kinetic energy
IE Internal energy
E Total energy (kinetic plus internal)
Ω Spatial domain
∂Ω Boundary of spatial domain
n̂ A boundary normal vector

Table 1: Notational conventions used forcontinuumvariables

As we introduce the MFEM discretization process and the notion of discretefields, we will use the notation conventions as
outlined in Table 2. For this case, we will usebold faced letters to denote “arrays” (i.e. matrices and vectors) where capital
letters will denote matrices and lower case letters will denote vectors. We will use a superscriptn to designate a discrete time
step. Subscripts will be reserved for indexing spatial quantities. We will adopt the Burton-Caramana-Shashkov notation of [15]
and [16] for describing “nodal” values (subscriptp) and “zonal” values (subscript “z”). We also introduce the notion of a discrete
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basis for vector fields (e.g. a discrete velocity basis), which we will denote as~wi . The subscript in this case will be a a “degree of
freedom” (DOF) index, i.e. the number of unique degrees of freedom in the basis function expansion.

Notation / Symbol Description

∆t A discrete unit of time (a.k.a. “time step”)
Ωz A discrete volume of space (a.k.a. “zone”)
~wi A discrete basis for vector fields
φi A discrete basis for scalar fields
−n A superscript denoting a discrete integer time step
−z A subscript denoting a particular “zonal” value
−p A subscript denoting a particular point (a.k.a “nodal”) value
−i, j Subscripts denoting “degree of freedom” indices for inner products
−̂ An accent denoting definition with respect to a reference coordinate system
Jz The Jacobian matrix for zonez
M z The “mass” matrix for zonez
Sz The “stiffness” matrix for zonez
Dz The “derivative” matrix for zonez
vz The velocity DOF vector for zonez
pz The pressure DOF vector for zonez
M The global (assembled) “mass” matrix
S The global (assembled) “stiffness”
D The global (assembled) “derivative” matrix
v The global (assembled) velocity DOF vector (array)
p The global (assembled) pressure DOF vector (array)

Table 2: Notational conventions used fordiscretevariables

2.2 The Euler Equations in a Lagrangian Frame

The equations of hydrodynamics in a Lagrangian (a.k.a. co-moving or material) reference frame are described by a set of four
unknowns: velocity~v, densityρ, internal energye, and pressureP; and a set of four equations, known as the Euler equations:

Momentum Conservation: ρ
∂~v
∂t

= −~∇P (1)

Mass Conservation:
1
ρ

∂ρ
∂t

= −~∇ ·~v (2)

Energy Conservation: ρ
∂e
∂t

= −P~∇ ·~v (3)

Equation of State: P = EOS(ρ, e) (4)

These equations describe the interplay between kinematicsand thermodynamics for a collection of materials distributed over a
given spatial domainΩ. The connection between these two physical processes in a given material is the so called Equation of
State (EOS). The EOS is a material response function which determines the net pressure exerted by a differential volume of a
certain material as a function of how much mass it contains (its density) and its internal energy. We define the total mass in the
spatial domainΩ to be

m≡
Z

Ω
ρ (5)

Furthermore, the total kinetic energy in the spatial domainΩ is defined as

KE =
1
2

Z

Ω
ρ~v·~v (6)
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The total internal energy in the spatial domainΩ is defined as

IE =
Z

Ω
ρe (7)

The total energy contained in the spatial domainΩ is thus

E = KE+ IE (8)

If the spatial domainΩ contains no energy sources (or sinks) and there is no flux of energy and/or mass out of the boundary of the
domain,∂Ω, then the total energy contained inΩ is a constant for all time

∂E
∂t

= 0 (9)

2.3 The Compatible Discretization Philosophy

Our goal is to solve the continuum equations of (1) - (4) by replacing the continuum differential operators and fields which are
valid for all points in space and time, with discrete analogues which are valid on discrete volumes (a.k.a zones) and discrete points
in time (a.k.a. time steps). If our discretization process is consistent and convergent, then our discrete solution will converge to the
continuum solution in the limit that the discrete volumes goto zero (i.e. mesh refinement) and the discrete time steps go to zero (i.e.
time refinement). The notion of ”compatibility” extends theidea of consistency and convergence by adding additional constraints
/ requirements to the numerical discretizations based on properties of the corresponding continuum partial differential equations
(PDEs). A compatible (a.k.a. “mimetic”) spatial discretization method is said to “inherit or mimic fundamental properties of
the continuum PDE such as topology, conservation, symmetries and . . . maximum principles [10].” Such methods have proven
highly successful in several fields in computational physics, including electromagnetics [17], [18], incompressibleflow [19] and
magnetohydrodynamics [20]. The idea is becoming popular innumerical shock hydrodynamics. In simple terms, the goal of
compatibility is to reproduce all of the salient continuum features of differential equations and their correspondingdifferential
operators (both time and space dependent) in a discrete sense. One example is energy conservation. The continuum equations we
wish to solve conserve total energy, therefore our subsequent discrete equations should likewise conserve some discrete measure
of total energy. Less obvious examples lie in the discretization of first order spatial differential operators likeGrad, Curl andDiv
as well as second order spatial differential operators suchasGrad(Div), Curl(Curl) andDiv(Grad). For this case, compatibility
implies that continuum properties such as~∇× (~∇~f ) = 0 for all vector fields~f must be reproduced by the discrete differential
operators. While seemingly abstract, this property is essential for guaranteeing stability and eliminating certain “spurious” modes.

2.4 Introduction to Mixed Finite Element Methods

What do we mean by Mixed Finite Elements? Loosely speaking, any method which uses multiple sets of basis functions (e.g.
bilinear velocity + constant pressure) can be thought of as amixed method. In this context, we can view the traditional SGH
method as a mixed method (in fact, mixed methods are a rigorous, high order generalization of the staggered-grid conceptto
arbitrary unstructured grids). However, there are severalfundamental properties that a true MFEM satisfies:

• We follow the rigorous definition of a finite element as originally set forth by Ciarlet [21]. This means we have concrete
definitions for our finite element space (and subsequent basis functions), our degrees of freedom, and our element topology
and geometry. For more details on how this process works in a practical setting, see [22].

• Accurate numerical quadrature over zones is key to avoid “variational crimes.” This means that we perform all of our zone
based integrals using high order quadrature rules. The concept of “nodal mass” that is used in traditional SGH methods
is equivalent to mass-lumping, i.e. under integrating the element mass matrix and we feel this contributes to spurious grid
distortion in Lagrangian hydro.
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• Galilean invariance is achieved through proper discretization in arbitrary curvilinear coordinate systems. This means we
build the metric tensor (i.e the Jacobian matrix) directly into our discretizations which removes the dependence of our
numerical solution on the regularity of the mesh.

• Improved accuracy and stability is achieved by using higherorder methods (e.g. quadratic basis functions for velocity).

• In general this means we need to solve sparse linear systems to obtain our solution unknowns. This is troubling to some, due
to the computational cost involved in assembling and solving a linear system at each Lagrange hydro time step. However,
for the sake of obtaining improvements in accuracy, we feel it is justified; certainly at this early stage of development.
Future work will investigate means of reducing this computational effort.

2.5 Spatial Discretization

We begin by decomposing the spatial domainΩ into a set of non overlapping, discrete volumes called zones(a.k.a. elements).
The union of these discrete zones forms the computational mesh, which we will denote as̃Ω, and is defined as

Ω̃ ≡ ∑
z

Ωz (10)

Note that the computational meshΩ̃ is a geometrical approximation to the true geometry of the continuum domainΩ. We now
make the very important distinction between zonetopologyandgeometry. The topology of the zone defines its connectivity,
for example triangular zones vs. quadrilateral zones. In simple terms, the topology of a zone is defined by its number of unique
“vertices” and how they are connected. The geometry of a zoneis determined by the locations of these vertices in some coordinate
space. For example, we typically consider the case where thediscrete zonesΩz are quadrilaterals (hexahedrons) formed by
connecting straight lines to the vertices. However, when using a mixed finite element method, we are not restricted to this choice
– we can use triangles (tetrahedrons). Furthermore, we are not restricted to using straight lines, we can readily incorporate curved
surfaces provided we have higher order geometrical information (i.e. instead of straight lines connecting two vertices, we could
use a quadratic function which passes through three vertices, see [17] for specific examples of this idea). The topology of our zone
determines the explicit form of the basis functions we will use (see Section 2.6). The geometry of the zone (i.e. straightlines,
curved lines, etc . . . ) determines the order of the local-to-global (a.k.a. parametric) mapping which defines the Jacobian matrix of
the zone (see Section 2.7).

2.5.1 Discrete Momentum Conservation

We begin our spatial discretization process by applying a variational formulation to the momentum conservation equation. We do
this by transforming the momentum equation into a weighted volume integral equation. We multiply (1) by some vector valued
test function~w and integrate over the finite element meshΩ̃ to obtain the variational form

Z

Ω̃
(ρ

∂~v
∂t

) ·~w = −
Z

Ω̃
(~∇P) ·~w (11)

Now we perform integration by parts on the right hand side of (11) and apply the Gauss divergence theorem to obtain
Z

Ω̃
(ρ

∂~v
∂t

) ·~w =
Z

Ω̃
(~∇ ·~w)P−

I

∂Ω̃
P(~w· n̂) (12)

wheren̂ is the outward pointing unit normal vector of the surface∂Ω̃. Now we assume a piece wise polynomial representation of
the fields~v andP over the mesh̃Ω of the particular form

~v(~x, t) ≈ ∑
i

vi(t)~wi(~x) (13)

P(~x, t) ≈ ∑
i

pi(t)φi(~x) (14)

f or ~x ∈ Ωz
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Figure 4: Schematic depiction of a continuum spatial domainΩ and its geometric approximation by means of a finite element
meshΩ̃ consisting of a set of discrete quadrilateral volumes, or zonesΩz.

Note that we have introduced a separation of variables in thebasis function expansions of (13) and (14), where the coefficients of
the expansion (a.k.a. “degrees of freedom” or DOF) depend only on time while the basis functions depend only on space.

As mentioned in Section 1, we would like the discrete representation of pressure to be a piece-wise constant zone centered
value. For this simple representation, the basis function expansion for pressure in (14) takes on the specific form:

P(~x, t) ≈ p(t) (15)

Therefore, for a given zoneΩz, the basis function expansion of pressure is constant in space. Now we apply Galerkin’s method to
our variational formulation of (12), which means that we useour velocity basis functions~wi from (13) as our testing function. If
we test against every basis function in the expansion and ignore the boundary intergal term, we obtain following linear system of
ordinary differential equations (ODEs)

Z

Ω̃
(ρ

∂vi

∂t
)(~wi ·~w j) =

Z

Ω̃
(~∇ ·~w j)P (16)

Now we apply our piece-wise constant representation for pressure from (15) and pull all terms that are not spatially dependent out
of the integrals to obtain

∂vi

∂t

Z

Ω̃
ρ(~wi ·~w j) = p

Z

Ω̃
(~∇ ·~w j) (17)

For clarity, we prefer to write the linear system of (17) in terms of matrices and vectors as

M
∂
∂t

v = DTp (18)

whereM ,D,v andp are global matrices and vectors (a.k.a. arrays) which are assembled over the entire meshΩ̃ from the contri-
butions of each individual zone as

M = Assemble(M z)

D = Assemble(Dz)

v = Assemble(vz)

p = Assemble(pz)
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The process of global assembly is analogous to the concept of“nodal accumulation” that is used in a traditional SGH code where
a quantity at a node is defined to be the sum of contributions from all of the zones which share this node. For the case ofH(Div)
basis functions (described in Section 2.6) which have unknowns defined on mesh faces, assembly is simply the process by which
a quantity at a face is defined to be the sum of contributions from all of the zones which share that face. This process requires the
notion of a global face indexing scheme and this is discussedin Section 3.4.

We define the “mass matrix” for zonez to be

(M z)i, j ≡
Z

Ωz

ρ(~wi ·~w j) (19)

This matrix is symmetric positive definite (SPD) by construction, and has a dimensionNv by Nv, whereNv denotes the number of
coefficients used in the basis function expansion for velocity of (13). We define the so called “derivative” matrix as

(Dz)i, j ≡
Z

Ωz

(~∇ ·~w j) (20)

This matrix isrectangularwith dimensionNp by Nv, whereNp denotes the number of coefficients used in the basis function
expansion for pressure of (14). Since we have already assumed simple piece-wise constants for pressure in (15), this means that
Np = 1 and so our derivative “matrix” is technically a vector, butwe choose to write it in this form for the sake of generality. This
rectangular derivative matrix is a map between the two discrete representations of velocity and pressure and is a discrete version
of theDiv operator. Its adjoint (or transpose) is a discrete version of theGrad operator as seen in (18).

Figure 5: Schematic depiction of the velocity deformation field transforming a zone from one time stepn to another atn+1 in a
time of ∆t.

In the Lagrangian description of hydrodynamics, our discrete meshΩ̃ ≡ ∑zΩz moves or “flows” with the material. This means
that at some timet (denoted by the integern) we have a certain geometrical configuration of mesh elements determined by the
Lagrangian coordinates~xn (a.k.a vertices). The Lagrangian coordinates at timen determine the geometry of our zonesΩn

z. A
principle goal of the Lagrange hydro step is to compute theaccelerations(due to a collection of various forces) which will cause
the material to move a discrete distance∆~x in a discrete amount of time∆t such that at timet +∆t we have a different geometrical
configurationΩn+1

z ; see Figure 5 for a schematic depiction of this process.
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The acceleration is defined as the instantaneous change in velocity

~a≡
∂~v
∂t

We therefore define the velocitydeformation fieldas

~vde f ≡~vn +∆t~a (21)

where∆t is some discrete time step between statesn andn+1. The acceleration field~a therefore defines a differential change in
velocity that is used to accelerate a zone from its current configurationΩn

z to a new configurationΩn+1
z in a discrete time step∆t.

The deformation field is usually prescribed on the vertices of the mesh, but it is (implicitly) assumed that it can be extended to the
whole domain. We define the discrete acceleration to be

a≡
∂
∂t

v

2.5.2 Discrete Mass Conservation

Now we define the concept of “zonal mass”; this is postulated to be the total mass contained within a discrete volume element Ωz

and is defined by the following integral

mz ≡
Z

Ωz

ρ (22)

With this definition, the fundamental postulate of the Lagrangian description of hydrodynamics can be written as

∂mz

∂t
= 0 (23)

This implies that the total mass in a discrete volume element(or zone) is a constant. Stated another way, no mass enters orexits the
boundary of a discrete volume elementΩz regardless of how the geometry of the volume element changesin time. It is important
to point out that this postulate places no restriction on howthe density within a zone can vary, i.e. the density (mass perunit
volume) inside the discrete volume element can be a functionof space and time, the only restriction is that it must integrate to a
constant mass by means of (23)

To remain consistent with the ARES architecture, we choose to approximate the density with a function which has a constant
value,ρz in each zoneΩz. In this case, we can simplify (23) and the principle of zonalmass conservation implies

ρn
z =

mz

Vn
z

(24)

whereVn
z is the volume of the zoneΩn

z. This is the same approach that is used in most traditional SGH codes and is sometimes
referred as “mass conservation by fiat” [15]. The change of variables induced by the deformation field~vde f implies

Z

Ωn+1
z

ρn+1
z =

Z

Ωn
z

ρn+1
z

(

1+∆t~∇ ·~vde f
)

+O(∆t2)

If we apply the principle of zonal mass conservation for the case of piece-wise constant densities, we get

ρn+1
z −ρn

z

∆tρn+1
z

= −
1

Vn
z

Z

Ωn
z

~∇ ·~vde f +O(∆t)

Thus, up to anO(∆t) term, zonal mass conservation approximates the continuousmass conservation equation of (2)

1
ρ

∂ρ
∂t

= −~∇ ·~v

11



2.5.3 Discrete Energy Conservation

Recall from Section 2.2 the total energy in a given spatial domainΩ at timen is defined as

En =
1
2

Z

Ωn
ρn~vn ·~vn +

Z

Ωn
ρnen

Thechangein kinetic energy during a discrete Lagrange time step∆t, induced by the acceleration field~a on the current spatial
configurationΩn is

1
2

(

Z

Ωn
ρn~vde f ·~vde f−

Z

Ωn
ρn~vn ·~vn

)

= ∆t
Z

Ωn

Pn ~∇ · (
~vde f +~vn

2
)

Now, assume that the new internal energy satisfies

en+1 = en−∆t
Z

Ωn

Pn

ρn
~∇ · (

~vde f +~vn

2
)

and the new velocity~vn+1 on thenewconfigurationΩn+1 is computed such that
Z

Ωn+1
(ρn+1~vn+1) ·~vn+1 =

Z

Ωn
(ρn~vde f) ·~vde f (25)

Then the total energy is conserved
En+1 = En

Thus, the change in kinetic energy from~vn to~vn+1 is exactly compensated by the change in internal energy. To preserve this on
the next time step, the velocity should be transfered without introducing any new kinetic energy. This can be ensured by asimple
(global) scaling of the~vn+1 vector field onΩn+1.

2.5.4 Discrete Equation of State

The equation of state is a material response function which specifies the pressure exerted by a given volume of material which
contains a specified amount of mass and has a specified internal energy per unit mass. The discrete version of the EOS is simply
a piece-wise constant function of the from

Pn
z = EOS(ρn

z, en
z) (26)

2.6 Mixed Finite Element Basis Functions forH(Div)

Here we introduce the specific form of the basis functions we will use for velocity, which we will denote as~wi , and for pressure,
which we will denote asφi . Again, the subscripti is a “degree of freedom” (or DOF) index which spans the total number of unique
basis functions which make up the basis set. The basis functions are said tospana particular polynomial space over a discrete
spatial domainΩz (a.k.a. zone); this is expressed notationally as

~wi ∈ W(Ωz)

φi ∈ P(Ωz)

The specific form of the polynomial space and the number of basis functions required to span it are determined by the topology
and geometry of the zone as well as the maximum degree of polynomials we wish to represent exactly with the basis set. For
example, suppose we want to represent alllinear functions of one variable over the one dimensional spatial domainΩz = [0,1].
Thetopologyof our zoneΩz is determined by the fact that we have a one dimensional unit of space defined by two “vertices”. The
geometryof our zoneΩz is determined by the specific locations of these vertices at 0and 1. This simple domain can be spanned
by the polynomial basisα0+α1x, i.e. one constant term with a coefficientα0, and one linear term with a coefficientα1. The basis
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functions for this case are very simple, namely 1 andx. The degrees of freedom (DOF) are simply the coefficientsα0 andα1.
Suppose we wish to approximate some arbitrary scalar function of one variable,f (x), with our basis over the domainΩz = [0,1].
This is accomplished by the following interpolation (a.k.a. basis function expansion)

f (x) ≈ ∑
i

αiφi(x) (27)

For this simple example, the coefficients in the expansion, the DOFαi , are simply the value of the functionf at the end points
of the domainΩz, namelyα0( f ) = f (0) andα1( f ) = f (1). The coefficients of expansion are said to be theprojectionof the
function f onto thedual spaceof the discrete basis, and in general they are defined by weighted integrals of the functionf over
the domainΩz (i.e. the degrees of freedom are defined aslinear functionalsin a manner completely analogous to computing the
coefficients in a Fourier expansion). This simple example serves to illustrate two key concepts we will be using in this section:
first, the notion of adiscrete basisφi which spans some polynomial space defined with respect to some discrete spatial domain
such thatφi ∈ P(Ωz) and second, the notion of degrees of freedom as aprojectionoperation (i.e. linear functionals).

As mentioned previously, we would like to keep our discrete pressure as piece-wise constants at zone centers. In terms of
function spaces, this means our discrete pressure basis is very simple, just a single constant value is required. The degree of
freedom for this simple basis is the value of the pressure evaluated at the zone center. Having specified a basis for pressure,
we now must choose a specific velocity basis,~wi . However, in order for the MFEM to be stable, we cannot choosethis basis
arbitrarily. It must be chosen to satisfy the so called Babuska-Brezzi stability condition [23]. Simply stated, the stability condition
requires that our velocity basis satisfy the following relation

~∇ ·W(Ω) = P(Ω) (28)

In other words, the basis we choose for velocity must have a constant divergence (since we have restricted ourselves to using
piece-wise constants for our discrete pressure basisφi).

Finally, before we define the basis for velocity, we need to define the topology of the discrete spatial domain it will be defined
on. It is at this point where we make the choice as to what the underlying topology of our discrete zonesΩz will be. To be
compatible with the current ARES 2D architecture, we will choose to work with quadrilateral zones. All quadrilateral zones
(including zones with curved boundaries) in a physical meshare topologically equivalent to a reference quadrilateralzone. In
order to make integration over the reference zone as simple as possible, we adopt a standard Cartesian coordinate systemwith an
origin at the point(0,0) as our reference coordinate system. Throughout the remainder of this paper, all objects explicitly defined
with respect to this reference coordinate system will be accented with ahat symbol. LetΩ̂z denote the unit quadrilateral such that

Ω̂z ≡ {(x̂, ŷ); 0≤ (x̂, ŷ) ≤ 1} (29)

2.6.1 The Raviart-Thomas Basis Functions

We define the explicit form of the so called Raviart-Thomas (RT) [11] basis functions for a unit quadrilateral in Table 3. These
four vector valued basis functions are linear in ˆx and ŷ (though not complete for all linear functions) and interpolate at element
faces, i.e. each basis function has a non-zero normal component along one and only one face in the reference quadrilateral. This
can be seen visually by the vector plots of the basis functions shown in Figure 6. Most importantly, the basis has a constant
divergence.

The degrees of freedom for these basis functions are the normal components of the velocity along each of the four faces (edges)
of the quadrilateral, giving us one DOF per face. Note that there is freedom in choosing the labeling and orientation convention for
the explicit form of the degrees of freedom (e.g. the orientation of the face normal vector). We have chosen the explicit functional
form of the degrees of freedom as given in Table 4 as our particular convention. There are certain practical concerns thathave
determined this choice. A schematic depiction of the these DOF and the conventions we have chosen are shown in Figure 7. The
use of these low order RT basis functions in the prototype ARES MFEM hydro code are specified by the option “mfemorder 4”
(i.e. 4 DOF per zone).
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Basis Function x-component y-component

~̂w1 0 1− ŷ
~̂w2 x̂ 0
~̂w3 0 ŷ
~̂w4 1− x̂ 0

Table 3: The Raviart-Thomas basis functions on a reference quadrilateral

Figure 6: Vector field plots of the four Raviart-Thomas velocity basis functions on a reference quadrilateral.

DOF ID Functional Form

v1 v1(~f ) = ~f (~x1+~x2
2 ) · n̂1

v2 v2(~f ) = ~f (~x2+~x3
2 ) · n̂2

v3 v3(~f ) = ~f (~x3+~x4
2 ) · n̂3

v4 v4(~f ) = ~f (~x4+~x1
2 ) · n̂4

Table 4: The Raviart-Thomas degrees of freedom on a reference quadrilateral

Figure 7: Schematic depiction of the Raviart-Thomas velocity and pressure degrees of freedom.
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2.6.2 The Brezzi-Douglas-Marini Basis Functions

We define the explicit form of the so called Brezzi-Douglas-Marini (BDM) [12] basis functions for a unit quadrilateral inTable
5. These eight vector valued basis functions are quadratic in x̂ and ŷ (though not complete for all quadratic functions) and also
interpolate at element faces, i.e. each basis function has anon-zero normal component along one and only one face in the reference
quadrilateral. However, because this is a high-order basis, we now have two DOF per face. We provide visual examples of these
high order vector basis functions in Figure 8. Again, the critical feature of this basis is that it has a constant divergence. This is
accomplished by adding a higher order component to the low order Raviart-Thomas polynomial space that is divergence free, i.e
an additional “curl” term. This can be seen in the vector basis plots of Figure 8.

Basis Function x-component y-component

~̂w1 (x̂− x̂2)/2 1− x̂− ŷ+ x̂ŷ
~̂w2 −(x̂− x̂2)/2 x̂− x̂ŷ
~̂w3 x̂− x̂ŷ −(ŷ− ŷ2)/2
~̂w4 x̂ŷ (ŷ− ŷ2)/2
~̂w5 −(x̂− x̂2)/2 ŷ− x̂ŷ
~̂w6 (x̂− x̂2)/2 x̂ŷ
~̂w7 1− x̂− ŷ+ x̂ŷ −(ŷ− ŷ2)/2
~̂w8 ŷ− x̂ŷ (ŷ− ŷ2)/2

Table 5: The BDM basis functions on a reference quadrilateral

Figure 8: Vector field plots of the eight BDM velocity basis functions on a reference quadrilateral.

Again, there is freedom in choosing the labeling and orientation convention for the explicit form of the degrees of freedom for
this basis. We choose to define the degrees of freedom for these basis functions according the convention proposed by [24], and
provide the explicit functional forms in Table 6. The DOF represent the value of the velocity at a given vertex, dotted into one of
the face normals, giving us two DOF per face. A schematic depiction of the DOF and the conventions we have chosen are shown
in Figure 9. The use of these high order BDM basis functions inthe prototype ARES MFEM hydro code are specified by the
option “mfemorder 8” (i.e. 8 DOF per zone).
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DOF ID Functional Form

v1 v1(~f ) = ~f (~x1) · n̂1

v2 v2(~f ) = ~f (~x2) · n̂1

v3 v3(~f ) = ~f (~x2) · n̂2

v4 v4(~f ) = ~f (~x3) · n̂2

v5 v5(~f ) = ~f (~x4) · n̂3

v6 v6(~f ) = ~f (~x3) · n̂3

v7 v7(~f ) = ~f (~x1) · n̂4

v8 v8(~f ) = ~f (~x4) · n̂4

Table 6: The BDM degrees of freedom on a reference quadrilateral

Figure 9: Schematic depiction of the BDM velocity and pressure degrees of freedom.

2.7 The Jacobian Matrix and Coordinate System Invariance

The basis functions and degrees of freedom from Section 2.6 are defined only with respect to the reference zoneΩ̂z. There exists
a mappingΦ from the reference zonêΩz to an actual mesh zoneΩz. This mapping is functionally written as

~x = Φ(~̂x) (30)

This mapping is referred to as the local-to-global (a.k.a parametric) mapping and is defined by the geometry of the actualmesh
zone. For example, if we restrict ourselves to quadrilaterals consisting of four vertices connected by straight lines,then this is
equivalent to a bilinear parametric mapping. For the purposes of this work, this is exactly the mapping we will assume (since this
is precisely the type of quadrilateral zone that is permitted in the ARES code); however, we point out that higher order mappings
exist which permit curved surfaces. For the specific case of abilinear parametric map, we have

Φ(~̂x) =~x1(1− x̂)(1− ŷ)+~x2x̂(1− ŷ)+~x3x̂ŷ+~x4(1− x̂)ŷ (31)

where~xi denotes the Lagrangian coordinate of vertexi. We define the Jacobian matrix (a.k.a. metric tensor) for this mapping as

(Jz)i, j =
∂x j

∂x̂i
(32)
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For the specific case of a bilinear parametric map in 2D, the Jacobian matrix has the form

Jz(x̂, ŷ) =

(

(1− ŷ)(x2−x1)+ ŷ(x3−x4) (1− ŷ)(y2−y1)+ ŷ(x3−x4)
(1− x̂)(x4−x1)+ x̂(x3−x2) (1− x̂)(y4−y1)+ x̂(y3−y2)

)

(33)

wherexi andyi denote thex andy components of the Lagrangian coordinate of vertexi. Note that the Jacobian matrix is afunction
of x̂ andŷ and therefore varies inside of a zone.

A key property of theH(Div) basis functions described in section Section 2.6 is that they “interpolate” at element faces, meaning
that they have a non-zero normal component along one and onlyone face in the reference element. This can be expressed by the
relation

vi(~̂w j) = δi, j (34)

whereδi, j is the Kronecker delta function. We need to preserve this property for an arbitrary change of variables (i.e. for an
arbitrary quadrilateral), this is known asinvariance. The linear functionals which define the velocity degrees offreedom involve
dot products with face normals. Surface normal vectors transformcovariantlyupon a change of variables as

~n = |Jz| J−1
z n̂ (35)

where|Jz| denotes the determinant of the Jacobian matrix. Therefore,in order to preserve the invariance property of (34), we must
transform the basis functionŝ~wi in an inverse manner as

~wi =
1
|Jz|

JT
z ~̂wi (36)

This is known as the Piola transformation and it preserves the normal components of̂~wi upon an arbitrary change of variables. An
example of this transformation is shown in Figure 10.

Figure 10: Example of the Piola transformation applied to one of the BDM velocity basis functions on a distorted quadrilateral.
Note how the basis fiction maintains its property of having a normal component along one and only one face of the zone.

2.8 Construction of the Mass Matrix

Here we show the details of how the “mass matrix” of (19) is computed on a zone by zone basis using theH(Div) basis functions.
The integral over the actual mesh zoneΩz is transformed to an integral over the reference zoneΩ̂z by a change of variables as

(M z)i, j =
Z

Ω̂z

ρz(
1
|Jz|

JT
z ~̂wi) · (

1
|Jz|

JT
z ~̂w j) |Jz| (37)
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This integral is approximated using Gaussian quadrature ofa specified order. The quadrature rule is first defined in 1D by aset
of k weightswi and pointsxi , wherek denotes the order of the quadrature rule. Specifically, we use Gauss-Lobatto quadrature
where the endpoints of the 1D reference domain[0,1] are included in the pointsxi . This is done to maximize the sparsity of the
mass matrix (since the basis functions are also defined at these points). The one dimensional Gauss-Lobatto weights and points
on the interval[0,1] for k = 1, ...,5 are defined in Table 7. To generate the corresponding 2D weights and points for the reference
quadrilateralΩ̂z, we simply take a direct tensor product of the 1D weights and points, generating a total ofk2 weights and points.
The order of the quadrature rule can be specified in ARES with the option “mfemquadorder”. We have determined that the
optimal value isk = 3, resulting in 9 quadrature points per zone in the calculation of (37). This is the default value used in the
code.

Order 1

w1 = 1 x1 = 0.5

Order 2

w1 = 1/2 x1 = 0.0
w2 = 1/2 x2 = 1.0

Order 3

w1 = 1/6 x1 = 0.0
w2 = 4/6 x2 = 0.5
w3 = 1/6 x3 = 1.0

Order 4

w1 = 1/12 x1 = 0.0
w2 = 5/12 x2 = 0.276393
w3 = 5/12 x3 = 0.723607
w4 = 1/12 x4 = 1.0

Order 5

w1 = 0.05 x1 = 0.0
w2 = 0.272222 x2 = 0.172673
w3 = 0.355556 x3 = 0.5
w4 = 0.272222 x4 = 0.827327
w5 = 0.05 x5 = 1.0

Table 7: Weights and Points for 1D Gauss-Lobatto QuadratureRules of Order 1 Through 5

We now point out some interesting properties of the “mass” matrix. The velocity basis functions~wi have units ofdistancewhile
the velocity degrees of freedomvi have units of 1/time, such that the basis function expansion

~v≈ ∑
i

vi~wi

has the correct units ofdistance/time. This means that the “mass” matrix has units ofmass∗distance2. The mass matrix therefore
depends on the current spatial configuration of the mesh (i.ethe Lagrange coordinates) and must therefore change every time the
Lagrangian mesh is updated (i.e. at every discrete time step). This is in contrast to traditional SGH methods which have aconstant
“mass matrix” at every cycle (i.e. nodal mass). The discretekinetic energy in given zoneΩz is defined as

KEz =
1
2

vT
z M zvz (38)

and therefore has the correct units ofmass∗velocity2. Note that the discrete kinetic energy of (38) is a direct discretization of the
integral relation of (6).
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2.9 Construction of the Derivative Matrix

Here we show the details of how the “derivative matrix” of (20) is computed on a zone by zone basis using theH(Div) basis
functions. The integral over the actual mesh zoneΩz is again transformed to an integral over the reference zoneΩ̂z by a change
of variables as

(Dz)i, j =
Z

Ω̂z

~∇ · ~̂w j (39)

This is a simple calculation due to the fact that the divergence of the basis functions,~∇ · ~̂wi is a constant over any zone and can
therefore be pulled from the inside the integral (i.e. this matrix does not need to be recomputed at every time step).

2.10 Semi-Discrete Form of Hydrodynamics Equations

Recall from (18) the global momentum conservation equationis written as

M
∂
∂t

v = DTp

For the case of BDM basis functions,M is a symmetric positive definite matrix of dimension 2Nf acesby 2Nf aces, v is an array of
dimension 2Nf aces, D is a rectangular matrix of dimensionNzonesby 2Nf acesandp is an array of dimensionNzones, whereNzones

denotes the total number of zones in the mesh andNf acesdenotes the total number of unique faces in the mesh. The total discrete
kinetic energy in the mesh̃Ω is therefore given as

KE =
1
2

vTMv (40)

We assume a piece-wise constant value for the internal energy per unit mass. The discrete energy equation for a given zoneis
written as

mz
∂
∂t

ez = −pzDzvz (41)

The total discrete internal energy in the meshΩ̃ is therefore given by the sum

IE = ∑
z

mzez

Note that under the assumption of piece-wise constant densities, this is a discrete analogue of (7). Given these definitions, we can
define the following generalized discrete energy conservation equation

∂
∂t

(

1
2

vTMv +∑
z

mzez

)

=
1
2

vT(
∂
∂t

M)v (42)

Therefore, if ∂
∂t M = 0 (i.e. the mass matrix does not change over time), we recoverconservation of total energy (9) automatically.

However, as we pointed out in Section 2.8, this is not the casefor our MFEM mass matrix (in fact, we argue that this is not the
case foranyproper mass matrix on quadrialteral / hexahedral grids) andso we see the fundamental reason why the rescaling of
velocity is required in (25).

2.11 Mesh Motion, Nodal Velocity and Hourglass Modes

Our velocity field lives in the spaceH(Div), but in order to move the mesh, we need to somehow obtain our velocity field at mesh
vertices (a.k.a. nodes). One major advantage of having explicit basis functions is that once we have solved the discretemomentum
equation of (18), we can express the velocity at any point within a zone using a basis function expansion. In particular, we could
choose to evaluate the velocity at a particular vertex

~v(~xp) = ∑
i

vi ~wi(~xp)
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However, theH(Div) velocity representation only enforces normal continuity of the velocity field across zone boundaries, so there
is no guarantee that this field will be unique at a given vertex. One way to overcome this is to apply an averaging technique.The
simplest case is taking the average of the value of~v(~xp) from every zone which shares the vertex~xp. This nodal averaging method
can be specified in ARES with the option “mfemnodemethod 0”. This simple approach has proven to be the most robust and is
the default option.

A more advanced method is known as a “patch recovery” technique. The basic idea is that we use a local patch of elements
(namely all of the elements that share the given vertex~xp) and perform a least squares averaging of the contribution from each of
these zones to the vertex~xp. Functionally, this is expressed as

~̃vp ≡ ∑
z

R

Ωz
ψ~v

R

Ωz
ψ

(43)

where~v is our basis function representation of the velocity andψ is some interpolating shape function, such as the standard bi-
linear shape functions of (31). If we use bi-linear shape functions along with a simple 4 point quadrature rule, then (43)reduces to
simple volume weighted averaging. This nodal averaging method can be specified in ARES with the option “mfemnodemethod

1”. Finally, if we apply a more accurate 9 point quadrature rule, we obtain a higher-order averaging. This nodal averagingmethod
can be specified in ARES with the option “mfemnodemethod 2”.

Figure 11: Schematic depiction of the local patch recovery process for computing nodal velocity fields

Unfortunately, this averaging does not pay special attention to the hourglass modes since it is effectively taking ourH(Div)
represenation of velocity (which does not have hourglass modes) and converting it to a bilinear representation of velocity at nodes
(which does have hourglass modes). This is depicted in Figure 12. Therefore, some form of hourglass suppression is stillrequired
as a post-processing step. A simple local filter is the following:

~vp,hg =~vp−
β
4

(

(~vp ·~h1)~h1 +(~vp ·~h2)~h2

)

Here~h1 and~h2 are the two zonal hourglass modes andβ is an appropriately chosen parameter depending on the time step and
zone information.
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Figure 12: Consider a “checkerboard” pressure field on a simple grid (left). The MFEM solution of~∇P evaluated at multiple
points in a given zone is clearly non-zero as it should be (center). However by performing averaging to get~∇P at nodes , the
interior nodal fields are now zero (right).

2.12 Time Integration and the Lagrange Step

For the prototype capability described in this document, wehave employed a very simple leap frog time integration method for
the Lagrange step. The process for a given MFEM Lagrange hydro step (or cycle) is outlined below:

Mna = DTpn

vde f = vn +∆t a

~vde f
p = NodalAverage(vde f)

~xn+1
p = ~xn

p +∆t ~vde f
p

Vn+1
z = ComputeVolume(~xn+1

p )

ρn+1
z =

mz

Vn+1
z

en+1
z = en

z −
∆t
mz

Pn
z Dz(

vde f
z +vn

z

2
)

Pn+1
z = EOS(ρn+1

z ,en+1
z )

vn+1 = Pro jectAndRescale(~vde f
p )

Note that the overall sequence is very similar to what is traditionally done in a typical SGH code [4]. The key differencesare:

• A linear solve is performed to obtain the face based acceleration unknowns (analgous to dividing nodal forces by a “nodal
mass”).

• A nodal averaging step is performed to compute nodal velocity fields from the face based velocity representation

• The change in internal energy per zone is computed from the face based velocity representation (i.e. a discrete version of
velocity divergence).

• The transfer of the face based velocity from the mesh at timen to the newly updated mesh at timen+ 1 (a remap step)
requires a rescaling to prevent the introduction of new kinetic energy due the change in the mass matrix.

The method is easily adaptable to a more advanced predictor-corrector time integration scheme, or any other time marching
scheme. The results for discrete energy conservation in semi-discrete form of (42) are valid for a generic time discretization
process.
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2.13 Axisymmetric (r-z) Formulation

For problems that can be modeled as a body of revolution, we can cast our equations in axisymmetric form by assuming cylindrical
coordinates. Consider a three dimensional function of space defined with respect to a cylindrical coordinate system,f (r,θ,z). The
function is said be axisymmetric if the following conditionholds true

∂
∂θ

f (r,θ,z) = 0

Thus, our functionf is only spatially varying in ther-z plane as depicted in Figure 13. For an axisymmetric problem,the total
mass in a volumeΩ can be computed as follows

m≡
Z

Ω
ρ = 2π

Z

Γ
ρ r

This allows us to cast the variational form of the momentum equation which is usually defined as a full volume integral overthe
domainΩ, as a simplified integral over a “cut” in ther-zplane (which we denote asΓ) as follows.

2π
Z

Γ
r(ρ

∂~v
∂t

) ·~w = 2π
Z

Γ
r(~∇ ·~w)P (44)

Figure 13: Schematic depiction of the reduction of an axisymmetric problem to a surface integral over a “cut” in ther-zplane

For axisymmetric functions, the divergence operator is defined as

~∇ ·~f (r,z) =
∂
∂z

fz+
∂
∂r

fr +
fr
r

(45)

We can simply replacezwith x andr with y which allows us to write the axisymmetric momentum equation(44) as
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TheH(Div) basis functions have a constant divergence inx-y space and so this term can be pulled from the intergal to obtain
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This is the correct variational form of the momentum equation under the axisymmetric assumption and this form is coded in
ARES for the option “ifplane 0.” However, there is a fundamental flaw in this formulation. Recall the stability condition of
(28), which mandates that for the case of piecewise constantpressures, the divergence of our velocity basis must also beconstant.
For theH(Div) basis functions we have considered, this is certainly true in 2Dx-y and also in 3Dx-y-zspace. However, this isnot
true in axisymmetricr-zcoordinates due to the definition of theDiv operator in this particular coordinate system. The fundamental
flaw here lies in the fact that theDiv operator inr-z space of (45) is very different than theDiv operator inx-y space. This flaw
will lead to large and unacceptable errors on and near the axis of symmetry as shown in Section 4. This is in contrast to theGrad
operator which is functionally equivalent inx-y and inr-z, which is precisely the reason why the so called Petrov-Galerkin (a.k.a.
area weighting) scheme is justified in discretizing theGrad operator in methods such as [3].

We point out that this trouble in discretizing theDiv operator inr-z is not unique to the MFEM; in traditional SGH methods,
theDiv operator is approximated as a simple change in volume with respect to time for the internal energy update equation, but
this approach is flawed inr-z coordinates and causes large errors in energy that do not go away as the mesh is refined in time
or space. The discretization error is simply transferred from the momentum equation to the energy equation. We are currently
lacking a finite element basis that is specifically designed for axisymmetric problems of this type and therefore, any research into
this subject is of great importance.

2.14 Artificial Viscosity and the Treatment of Shocks

The most popular and straightforward method for treating shock waves in a Lagrangian hydrodynamics code is to introducean
artificial viscosity (i.e. a dissipative) term to the Euler equations as originally proposed by [5]. Specifically, we adda viscous
force term to the momentum equation and a corresponding energy term to the energy conservation equation to obtain

ρ
∂~v
∂t

= −~∇P + ~∇ · (µ~∇~v) (46)

ρ
∂e
∂t

= −P~∇ ·~v + (µ~∇~v) : ~∇~v (47)

whereµ is an artificial diffusion length scale and : denotes tensor contraction. Note that we have considered the general case of
a “tensor viscosity” where the viscous force is computed as the divergence of a stress-like tensor computed as the gradient of the
velocity field. The artificial viscous force term is a vector field and we can therefore apply a Helmholtz decomposition to obtain

~∇ · (µ~∇~v) = ~∇(µbulk
~∇ ·~v) − ~∇× (µshear

~∇×~v) (48)

If we ignore the shear term (an assumption which is only validwhen~∇×~v = 0), and define the following scalar value

q = µbulk
~∇ ·~v

then we can rewrite the modified momentum and energy equations as

ρ
∂~v
∂t

= −~∇(P+q) (49)

ρ
∂e
∂t

= −(P+q)~∇ ·~v (50)

Note that this is precisely the form of the equations used in traditional SGH codes wich make use of a so called scalar artificial
viscosity [5], [4].

A modern scalar artificial viscosity has the form

q = ρ
(

c1Cs|∆v|(1−Ψ)+c2ρ|∆v|2(1−Ψ2)
)

(51)

wherec1 andc2 are dimensionless constants (the options “qlin” and “qquad” respectively in ARES),Cs is the local sound speed
andΨ is the so called “monotonic limiter”. The goal of the limiteris to act as a shock detector and “switch on” (Ψ 6= 0) only in the
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vicinity of strong velocity gradients, while remaining off(Ψ = 0) when the solution is smoothly varying. The term “monotonic”
implies that the limiter is designed to prevent spurious ringing (or “overshoots” and “undershoots”). The details of how such a
monotonic limiter is constructed in an SGH code can be found in [4]. We point out that the theory for such monotonic limiters is
traditionally limited to 1D analysis and as stated in [4], “it is not obvious how to generalize . . . to multiple dimensions.” We feel
that it is precisely this limitation which is responsible for the type of spurious grid distortions shown in Figure 2 and noted in [8]
and [7]. However, there is currently a body work that is devoted to addressing this issue for the case of advective transport [25]
and this work may prove useful for improving such monotonic limters for artificial viscosities in multiple dimensions.

The term∆v in (51) is known as the “velocity jump” and is defined to be the change in velocity in a given zone in the direction
normal to the shock front. In 1D, it is straightforward to define such a jump term as∆v = dx∂v

∂x wheredx is the width of a zone

and ∂v
∂x is the divergence of velocity in 1D. In multiple dimensions it is not so straightforward to define. One common approach is

to define the velocity jump as a zone centered quantity

∆v = l~∇ ·~v (52)

wherel is a characteristic length of the given zone. The question is, which length do we use forl? In ARES, the characteristic
length in 2D is computed as an average valuel = A

∆x+∆y where∆x and∆y are the lengths of the median mesh lines which intersect
at the zone center andA is the area of the zone. This approach combined with (52) and (51)withouta limiter (i.eΨ = 0) is known
as the “bulk viscosity” option in ARES and is specified with the option “ifqmodel 3.” The trouble with this approach is that
it does not take the shock direction into account, and so for aquadriateral zone with a high aspect ratio, the length scaleis the
same regardless of wether the shock wave is traveling along the short direction, the long direction or some arbitrary direction in
between.

For the MFEM, it is straightforward to compute the cell centered velocity divergence as the inner product

(~∇ ·~v)z = Dzvz

However, because this is a cell centered scalar value, it does not have any directional information. To overcome this limitation,
we tried out the simple idea of defining the velocity jump to be

∆v =
1
2

(

(~v23−~v14) ·
d~x
|d~x|

+(~v34−~v12) ·
d~y
|d~y|

)

where~vi j is value of the velocity evaluated at the mid-point between the Lagrangian coordinates~xi and~x j of the zone using the
MFEM basis function expansion andd~x andd~y are the median zone vectors. We refer to this idea as the “modified” bulk viscosity.
We show in Section 4 that this simple idea can lead to improvements, but we do not feel it is a general robust solution to the
problem of defining artificial viscosities in multiple dimensions. We feel that the best solution to this problem is to consider the
more accurate case of a tensor viscosity coupled with an improved treatment of the “monotonic limiter” term.

3 Description of Code Additions / Modifications

In this section we give a brief, high level overview of the specific code additions that were made in order to implement the MFEM
hydro capability in ARES. The vast majority of coding was added in five main source files located in the “lag” subdirectory of
the ARES source tree:

• MFEM2D.c – This file contains all of the core routines for computing zone based MFEM quantities such as Jacobian matrices,
local to global transformations, mass and derivative matrices. Also includes routines for projection operations, nodal field
reconstruction and zone based artificial viscosity calculations.

• MFEMLinSys.c – This file contains mesh level (i.e. loops over domain structures) routines for performing global opera-
tions required for a linear solve such as assembling a globalmass matrix, a global right hand side and applying boundary
conditions. Makes use of the HYPRE unstructured solver interface.
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• MFEMAccel.c – Extracts the solution from the acceleration operator linear solve and uses it to construct the nodal velocity
field which will accelerate the grid. Also computes anti-hourglass forces using various experimental methods.

• MFEMUpdateGrid.c – Applies the acceleration to grid nodes and updates the Lagrangian coordinates.

• MFEMWork.c – Computes the corresponding thermodynamic work done on themesh by the Lagrange step in a conservative
manner.

In addition to these files, there are several other auxiliarysource files that were modified to permit use of the new MFEM hydro
algorithm ares, most notably in theblk/domain.c file for adding new domain fields, but for the sake of brevity and clarity we
have not included these modifications here.

3.1 Zone Specific Routines ofMFEM2D.c

The bulk of the routines for performing MFEM zone specific operations as described in the Theoretical discussion of Section 2
are in the fileMFEM2D.c. These routines are called on a zone-by-zone basis, usuallyfrom within in a domain-loop. Below are
descriptions of the key routines that are used to compute MFEM quantities on a given zone:

MFEM2D_jacobian - Evaluate Jacobian matrix at a point in 2D

MFEM2D_jacobian_inv - Computes the inverse of a given Jacobian matrix

MFEM2D_loc_to_glob - Get the global coordinates of a point in reference

space

MFEM2D_get_quadrule - Computes and returns the quadrature weights and

points for a specified quadrature rule order

MFEM2D_eval_RT_basis - Evaluates the RT basis functions at the specified

quadrature points

MFEM2D_eval_BDM_basis - Evaluates the BDM basis functions at the specified

quadrature points

MFEM2D_get_RT_massmat - Get the local RT mass matrix for a given zone

MFEM2D_get_BDM_massmat - Get the local BDM mass matrix for a given zone

MFEM2D_get_BDM_divmat - Compute the rectangular divergence matrix for a given

zone using the BDM basis functions and Gaussian

quadrature

MFEM2D_project_RT - Project a nodal vector field onto the RT space

MFEM2D_project_BDM - Project a nodal vector field onto the BDM space

MFEM2D_interp - Interpolate a nodal vector field at zone nodes

using the basis functions and a set of degrees of

freedom

MFEM2D_get_face_map - Computes the global IDs of the face degrees of

25



freedom for a given zone. Only valid for the specific

case of a single mesh block

MFEM2D_CalcQDivV - Calculates a zone centered scalar artifical viscosity

3.2 Linear System Specific Routines ofMFEMLinSys.c

In order to assemble and solve a sparse linear system that is defined over the entire mesh, we need mesh level routines for gathering
and scattering our local zone based results into a global linear system object. In addition, we need routines for computing and im-
posing boundary conditions as well as retrieving zone basedsolution info from the global solution vector. The fileMFEMLinSys.c
contains such routines and is the primary interface betweenARES and the HYPRE unstructured solver interface (discussed in the
next section). Below are descriptions of the key routines that are used to assemble global linear system quantities needed for a
linear solve and its post-processing:

MFEMLinSys_Init - A function for initializing the HYPRE matrix data

used for MFEM hydro

MFEMLinSys_SetShared - A function for setting the shared degree of

freedom information for the HYPRE matrix data

(NOTE - this routine is necessary for multi-block

caluclations and requires a global face index,

and is therefore not yet implemented)

MFEMLinSys_AssembleMat - A function for assembling the linear system matrix

for MFEM hydro

MFEMLinSys_AssembleRHS - A function for assembling the linear system right

hand side for MFEM hydro

MFEMLinSys_SetBCs - A function for computing and setting the boundary

conditions for MFEM hydro

MFEMLinSys_Solve - A function for solving the MFEM linear system

MFEMLinSys_NodeAccel - A function for computing the nodal accelerations

from the face based solution vector

MFEMLinSys_Destroy - A function for cleaning memory and data structures

used by HYPRE for MFEM hydro

3.3 TheHYPRE FEI Solver Routines

The easiest way to interface with the HYPRE linear solvers library for the case of the MFEM hydro algorithm is through the
so called finite element interface (FEI). All that is required to make this interface work on any grid is a zone based “DOF index
map”. This mapping is simply an enumeration of the global DOFindices that a given zone contains. Since ourH(Div) MFEM
algorithm has velocity unknowns onfaces, this implies that we need a global face ID for every unique face in our mesh. For a
single domain, this mapping is trivial to construct on a single block, and is the approach that was taken for this prototype code.
However, as pointed out in the next section, a realistic multi-block (i.e. parallel) calculation will require the notion of global face
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indices. The original HYPREFEI is written in C++, but there is also a C wrapped version of this interface in the latest version of
HYPRE (v2.0.0) that is appropriate for use in ARES. Below aredescriptions of the key routines that are used inMFEMLinSys.c

to interface with the HYPRE linear solvers library:

HYPRE_FEI_create - Creates and initializes the HYPRE_FEI object

HYPRE_FEI_parameters - Sets linear solver paramters

HYPRE_FEI_initFields - Defines and initializes the fields of the linear

system (i.e. number of DOF per zone etc ...)

HYPRE_FEI_initElemBlock - Initializes the connectivity pattern of

a given element block (requires a zone based

DOF index map)

HYPRE_FEI_initElem - Initializes the connectivity pattern of

a given element (requires a zone based

DOF index map)

HYPRE_FEI_initComplete - Signifies completion of connectivity specification

HYPRE_FEI_sumInElemMatrix - Sums a local zone based matrix into the global

matrix

HYPRE_FEI_sumInElemRHS - Sums a local zone based vector into the global

RHS vector

HYPRE_FEI_loadNodeBCs - Applies boundary conditions to specified boundary

nodes. (NOTE - the name does NOT imply that only

node based DOF can be set)

HYPRE_FEI_loadComplete - Signifies completion of boundary condition

specification

HYPRE_FEI_solve - Launches the linear solver

HYPRE_FEI_getNumBlockActNodes - Used for retrieving a local zone based solution

vector from the global solution vector

HYPRE_FEI_getBlockNodeIDList - Used for retrieving a local zone based solution

vector from the global solution vector

HYPRE_FEI_getBlockNodeSolution - Used for retrieving a local zone based solution

vector from the global solution vector

HYPRE_FEI_resetSystem - Resets the HYPRE_FEI object
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3.4 Need for Global Face Data Structures

The current prototype MFEM hydro capability described in this document is limited to single block problems. This is due to the
fact that a global face indexing scheme is required in order to use face based DOF in conjunction with the HYPRE linear solvers
library. As mentioned previously, for a single domain, thismapping is trivial to construct on a single block. However, our ultimate
goal is a multi-block (i.e. parallel) calculation and this will require the notion of global face indices. This type of face indexing
scheme will be useful for many applications, not just the particular MFEM algorithm as described in this document. As such, it
will be worth wile to pursue development of these feature in the ARES code.

4 Results on Some Standard Hydrodynamics Test Problems

In this section we review some results obtained using the newly developed MFEM hydro capability in the ARES code on some
standard (or benchmark) hydrodynamics test problems. We compare results obtained with the new method to those obtainedwith
the default ARES hydro algorithm, which we will refer to as the HEMP method [3]. In each case, we point out the beneficial as
well as the undesirable features of the newly developed algorithm. Problems run with the “ifplane 1” option will be referred to
asx-y mode problems while those run with the “ifplane 0” option will be referred to asr-zmode problems.

4.1 The Coggeshall Adiabatic Compression Problem #2

We begin with a variation of a problem originally described in [26]; in particular we apply the analytic solution described as
problem #2. This problem describes an adiabatic compression (i.e. no shock waves generated) in one spatial coordinate,r. We
run the problem in 2D cylindrical geometry (i.e.x-y mode,k = 1) on a quarter symmetry polar “ring” mesh with an inner radius
Ri = 0.1 and an outer radiusRo = 1.0. We initialize the density, internal energy and velocity of the problem according to the
solution provided in [26]. For the free parameters given in the original problem definition, we choose the valuesk = 1,β = 1 and
ρ0 = 1 and obtain the following initial values

~v(r,0) = −
3r
5

r̂

ρ(r,0) = ρ0r

e(r,0) =
3
25

r2

We use a simple ideal gas equation of state withγ = 5/3. Since the problem is adiabatic, there is no need to apply anartificial
viscosity and so for this problem we explicitly turn off all artificial viscosity parameters by applying the options “qlin 0.0”
and “qquad 0.0.” This implies that for this test problem, all mesh motion will be generated by discrete pressure gradients. This
will allow us to investigate the differences between the MFEM discrete acceleration equation and the traditional HEMP approach.
We apply a random perturbation to a subset of the interior mesh nodes. In addition to the radial surface atr = Ri , we keep the
next level of radial nodes unperturbed, leaving a one zone thick ring of unperturbed mesh nodes. The initial mesh, pressure and
velocity of the problem are shown in Figure 14 and Figure 15. We apply “wall” boundary conditions (i.e.~v · n̂ = 0) to the two
symmetry planes and we leave the inner and outer radial surfaces “free”. We let the problem run for a total physical time of0.85
time units with a fixed time step, and run for a total of 600 timesteps. This generates a roughly 10-fold radial compressionof the
initial mesh. In Figure 16 we show a close up of the computational mesh the final time step using the default HEMP based hydro
algorithm. Note that the originally unperturbed radial surfaces display a great deal of distortion, breaking the radial symmetry
of the problem. This is due to the breakdown of the HEMP gradient operator for highly distorted grids as depicted in Figure3.
The errors introduced by this breakdown in grid acceleration are relatively small, but the cumulative effect of this error over many
cycles can lead to a drastic breakdown in symmetry as shown inFigure 16. In Figure 17 we show a close up of the computational
mesh at the final time step using the new MFEM hydro algorithm.Note that the originally unperturbed radial surfaces remain
unperturbed, thus preserving the radial symmetry of the problem even on a randomly distorted mesh.
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Figure 14: Initial polar “ring” mesh with a random pertur-
bation applied to a subset of the interior mesh nodes, ini-
tialized with an analytic pressure and a radial velocity field.

Figure 15: Close-up view of initial mesh. Note how first
two radial sets of nodes are left unperturbed.

Figure 16: Close-up view of final mesh after 600 cycles
using standard HEMP hydro algorithm. Note how the ini-
tially unperturbed inner ring is now highly distorted, break-
ing the radial symmetry of the problem.

Figure 17: Close-up view of final mesh after 600 cycles us-
ing new MFEM hydro algorithm. Note how the initially un-
perturbed inner ring maintains its radial symmetry even af-
ter a roughly 10-fold compression on a randomly distorted
mesh.
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4.2 The Cylindrical (x-y) Sedov Problem

Here we investigate the Sedov [27] explosion test problem inplanarx-y mode. The problem consists of an ideal gas (γ = 1.4)
with a delta function source of internal energy deposited atthe origin. The sudden release of the energy will create an expanding
shock wave, converting the initial internal energy into kinetic energy over time. Total energy should be conserved for all time.
We run the problem on a quarter symmetry 60 by 60 zoned Cartesian “box” mesh. The delta function source is approximated
by setting the internal energy per mass variable in the corner zone to a large value such that the total integrated energy over the
problem domain is 1EU; however, since we are only meshing a quarter of the entire domain, we need to scale this number by a
factor of 1/4. With this much initial energy, the expanding shock wave should arrive at a radial distance ofr = 1 at timet = 1. For
this problem we use the default scalar monotonic artificial viscosity, “ifqmodel 1” with “ qlin 0.5” and “qquad 0.6666667”
in conjunction with the new MFEM hydro algorithm. In Figure 18 we plot the pressure along with the Lagrangian mesh of the

Figure 18: Snapshot of pressure and Lagrangian mesh at
final time step using the MFEM hydro algorithm.

Figure 19: Line-out of pressure at 45 degrees. Note how
shock front is in correct location.

problem domain at the final time step. In Figure 19 we plot a “line-out” of the pressure along the 45 degree line. Note that the
shock front is very sharp (minimal diffusion caused by the scalar monotonic artificial viscosity) and the shock locationis correct.
In Figure 20 we plot the kinetic, internal and total energiesas a function of time on a log scale in time. Because of the extremely
large pressure gradient in early time (due to the delta function energy source), the CFL [28] limited time step is extremely small
at early times, thus a log scale is appropriate for viewing the dynamics at early time. Note how total energy is conserved exactly
as the initial internal energy is converted to kinetic energy over time. In Figure 21, we compare the total energy as computed by
the new MFEM hydro algorithm in comparison to the original HEMP algorithm. Note that total energy is not conserved for the
HEMP algorithm (due to the incompatibility of thePdV based internal energy equation with the HEMP gradient operator used in
the momentum equation.)

4.3 The Spherical (r-z) Sedov Problem

Here we investigate the Sedov explosion test problem in spherical r-zmode. The purpose of this example is to illustrate the issues
with the MFEM and HEMP formulations inr-z coordinates as discussed in Section 2.13. The problem is again initialized with a
delta function source of energy, the difference this time being that our problem domain is now a sphere.
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Figure 20: Kinetic, internal and total energies as a function
of time on a log scale using the new MFEM hydro algo-
rithm for the cylindricalx-y Sedov problem.

Figure 21: Comparison of total energy as a function of
time between the traditional HEMP algorithm and the new
MFEM algorithm. Note how the MFEM algorithm con-
serves energy exactly for all time while the HEMP algo-
rithm loses about 0.06% total energy.

Figure 22: Snapshot of density and Lagrangian mesh at final time step using the MFEM hydro algorithm inr-z mode. Note the
aberration in the density and mesh along thez-axis near the shock front.
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In Figure 22 we plot the Lagrangian mesh along with the density at the final time step using the MFEM hydro algorithm in
r-z mode. Note the “aberration” in density that appears along the z-axis in both the mesh and density. This aberration is most
noticeable at the shock front. This is caused by the fundamental (mathematical) error of using a basis defined in planar geometry
on a problem in axial geometry as discussed in Section 2.13. The HEMP algorithm does not have this issue because it formulates
theGrad operator in planar coordinates. However, the HEMP algorithm uses thedV approximation for theDiv operator which
leads to large errors in total energy. In Figure 23 we plot thekinetic, internal and total energies as a function of time ona log scale
using the MFEM hydro algorithm. Again, note how total energyis conserved exactly as the initial internal energy is converted
to kinetic energy over time. In Figure 24, we compare the total energy as computed by the new MFEM hydro algorithm in
comparison to the original HEMP algorithm. Note the large gain of roughly 10% in total energy. Again, this is due to the incorrect
discretization of theDiv operator inr-z coordinates that is used in the HEMP algorithm. It is important to point out that such a
large, artificial gain in total energy will affect the speed of the shock wave, causing it to overshoot the final location bya significant
amount.

Figure 23: Kinetic, internal and total energies as a function
of time on a log scale using the new MFEM hydro algo-
rithm for the sphericalr-zSedov problem.

Figure 24: Comparison of total energy as a function of
time between the traditional HEMP algorithm and the new
MFEM algorithm. Note how the MFEM algorithm con-
serves energy exactly for all time while the HEMP algo-
rithm gains about 10% total energy.

4.4 The Cylindrical (x-y) Noh Problem

Here we investigate the Noh [29] implosion test problem. Theproblem consists of an ideal gas (γ = 5/3) with a radially directed
initial velocity,~v(r,0) = −r̂. This generates a “stagnation” shock wave which propagatesradially outward from the origin with a
constant speed such that at timet = 0.6 the shock front should be at a radial location ofr = 0.2. Conceptually the opposite of the
Sedov explosion test, this test converts initial kinetic energy into internal energy over time, while conserving totalenergy. We run
the problem on a quarter symmetry Cartesian “box” mesh with initially uniform 40 by 40 zoning. In this example we use the new
MFEM hydro algorithm in conjunction with the modified “bulk”scalar artificial viscosity that was discussed in Section 2.14 and
compare to results obtained using the standard HEMP algorithm in conjunction with the standard “bulk” scalar artificialviscosity,
namely “ifqmodel 3” with “ qlin 0.25” and “qquad 2.0.”

In Figure 25 we plot the density and Lagrangian mesh at the final time step obtained with the standard HEMP algorithm. In
Figure 26 we plot the density and Lagrangian mesh at the final time step obtained with the new MFEM algorithm. Both plots use
an identical color scale. Note how the post shock density is much more uniform while the “wall heating” and mesh distortion is
less significant for the MFEM case. Note also the presence of high frequency “ringing” along the shock front for the HEMP case.
In Figure 27 we plot a “line-out” of the density along the 45 degree line. The analytic value of the post-shock density should be
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Figure 25: Snapshot of density and Lagrangian mesh at
final time step using the standard HEMP hydro algorithm
for the cylindrical Noh problem.

Figure 26: Snapshot of density and Lagrangian mesh at
final time step using the new MFEM hydro algorithm for
the cylindrical Noh problem.

ρ = 16 for the cylindrical Noh problem. Note how the MFEM result is closer to the correct value of 16 and that spurious “ringing”
at the shock front is greatly reduced.

In Figure 28 we plot the kinetic, internal and total energiesas a function of time on a log scale using the MFEM hydro algorithm.
Again, note how total energy is conserved exactly as the initial kinetic energy is converted to internal energy over time. In Figure
29, we compare the total energy as computed by the new MFEM hydro algorithm in comparison to the original HEMP algorithm.
Note the small gain of roughly 0.01% in total energy.

4.5 The Planar (x-y) Saltzmann Piston Problem

The Saltzman piston is a 1D shock tube problem run on a distorted mesh. It is designed to test a code’s ability to propagate shock
waves along a grid not aligned with the wave. A constant velocity is applied to the boundary nodes at one end of the problem
domain for all time, simulating a piston being pushed by an external energy source. This will generate a shock wave that should
only travel in thex-direction at a constant speed. The initial mesh used for this test is shown in Figure 30. We apply “wall”
boundary conditions (i.e.~v · n̂ = 0) to the two symmetry planes aty = 0 and aty = 0.1, and a “fixed” boundary condition (~v = 0)
to the end of the piston atx = 1.

In this example we use the new MFEM hydro algorithm in conjunction with the modified “bulk” scalar artificial viscosity that
was discussed in Section 2.14 as well as the high order nodal reconstruction option, “mfemnodemethod 2.” It was discovered
that the best results could be obtained when using this high order reconstruction method; however, it is discomforting that this
method does not universally generate better results for allof the test problems. In Figure 31 we plot the density and Lagrangian
mesh at timet = 0.7. At this point in time, the post shock density should have a uniform value ofρ = 4. In Figure 31 we plot the
density and Lagrangian mesh at timet = 0.8 where the initial shock wave has bounced off of the fixed wallat x = 1 and reversed
its propagation direction. At this point in time, the post shock density should have a uniform value ofρ = 10.
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Figure 27: Line-out of density at 45 degrees for both the HEMPand MFEM results. Note how the MFEM result is closer to the
correct post-shock density of 16.

Figure 28: Kinetic, internal and total energies as a func-
tion of time using the new MFEM hydro algorithm for the
cylindrical x-y Noh problem.

Figure 29: Comparison of total energy as a function time
between the traditional HEMP algorithm and the new
MFEM algorithm. Note how the MFEM algorithm con-
serves energy exactly for all time while the HEMP algo-
rithm gains about 0.01% total energy.

Figure 30: Initial mesh used for the Saltzman piston test.
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Figure 31: Snapshot of density and Lagrangian mesh for
the Saltzman piston problem at timet = 0.7 using the new
MFEM hydro algorithm.

Figure 32: Snapshot of density and Lagrangian mesh for
the Saltzman piston problem at timet = 0.8 using the new
MFEM hydro algorithm.

5 Conclusions and Future Work

In summary, the particularH(Div) MFEM hydrodynamics algorithm presented in this document has some very attractive and
promising features. We have shown that accurate pressure gradients can be computed even on distorted grids and that exact
energy conservation is possible by discretizing theDiv and Grad operators in a compatible manner. We have identified the
fundamental source of hourglass modes as the inability of a discreteGrad operator to faithfully reproduce the correct null space
of the continuumGrad operator (i.e. there exist non-constant “checkerboard” pressure fields for which~∇P= 0 in a discrete sense)
and that this is a fundamental problem of traditional SGH formulations which use bi-linear representations of velocityat mesh
nodes and piece-wise constant pressures at zone centers. Wehave shown that the MFEM hydro algorithm in combination witha
simple modification to the standard bulk artificial viscosity can yield significant improvements in some standard shock hydro test
problems.

However, the currentH(Div) MFEM hydro algorithm has some limitations that require further investigation. TheH(Div)
MFEM discreteGrad operator does have the correct range and null spaces as its continuum counterpart, but this only provides
the normal components of the velocity at mesh faces. In orderto move the vertices of the grid during the Lagrange step, we
have been forced to develop a nodal averaging process which converts ourH(Div) velocity representation into a nodal velocity.
Unfortunately, this process is susceptible to hourglass modes as shown in Figure 12. As shown in Section 2.14, the artificial
viscosity really needs to be treated as a tensor and not just asimple scalar quantity. Calculating the viscous force vector due to
this tensor in multiple dimensions requires a discrete version of theDiv(Grad) operator for vector fields. As shown in (48), this
operator involves both aDiv andCurl. TheH(Div) basis functions have only a well defined divergence (this is essentially the
definition of anH(Div) basis) and not a well definedCurl, and are therefore not suitable for defining such a differential operator.

These drawbacks suggest that a different choice of MFEM basis functions may be the best solution. We believe that use of the so
called Taylor-Hood (a.k.a.Q2−Q1 elements) may be a better choice. These basis functions area stable, high order generalization
of the unstableQ1−Q0 elements. These elements permit a discretization of theDiv(Grad) operator and allow for a natural
representation of velocity at mesh vertices. Furthermore,with the right choice of quadrature points, the mass matrix for such a
basis can be made diagonal without sacrificing accuracy, thus removing the need for a global linear solve at every Lagrange step.
They key obstacle at this point is that this basis requires a higher order representation for pressure, possibly at mesh nodes and is
not yet clear how to make this work for Lagrange shock hydrodynamics. Future research into this method should yield some very
exciting results.
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Regardless of the drawbacks imposed by the particular choice of anH(Div) conforming MFEM basis, a general MFEM ap-
proach to Lagrangian hydrodynamics offers several additional advantages that have not been explored in this work, namely:

• Method is naturally valid on unstructured grids

• Method is valid for triangular / tetrahedral elements

• Method is readily extendable to elements with curvilinear boundaries

These advantages will be explored as the current method is developed into maturity. In addition to this, we need to consider
the general case of an arbitrary Lagrangian-Eulerian (ALE)discretization and formulate new methods for transport (advection)
of state variables during the remap phase; and we need to consider the case of materials with strength (i.e. full stress tensor
calculations).

There is much work to be done, but we feel the time is right to make a concerted effort to explore and develop advanced methods
for numerical hydrodynamics. To summarize, we feel the following areas warrant further investigation:

• Use of Taylor-Hood elements (and similar variants) for Lagrangian shock hydrodynamics

• Development of a new basis specifically for axisymmetricr-z formulation

• Formulation of tensor viscosity in multi-dimensions

• Improved treatment of monotonic limiters in multi-dimensions and unstructured grids

• Use of curvilinear surface elements in Lagrangian shock hydro calculations

• Exploration of potential improvements on unstructured grids using MFEM framework

• Improved time integration methods combined with formal stability analysis
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